FSC Designer: A Visual FSM Design Tool for Robot Control

Okan Asik
H. Levent Akin

OKAN.ASIK@BOUN.EDU.TR
AKIN@BOUN.EDU.TR

Bogazigi University, Department of Computer Engineering, 34342, Istanbul, Turkey

Abstract

This paper describes the specification and design
of a visual tool which enables finite state machine
design and automatic code generation for robot
control. The main aim of this study is to achieve
rapid behavior development based on finite state
machines. Although it is currently used only in
the RoboCup Standard Platform League, it can
be used in any robot software since the visual de-
signer generates platform independent modified
version of State Chart XML. The tool also has fa-
cilities for push-button code generation and com-
pilation.

1. Introduction

A robot may look like a bunch of motors, sensors and some
processing units. Actually, this is true, if we just consider
the hardware of a robot. However, without software, a
robot is no more useful than a table. Typical robot soft-
ware have many components such as localization, locomo-
tion, perception and planning. Every component tries to
solve a specific robot problem. Some of the problems are
highly hardware dependent and some are environment de-
pendent. Planning is one of the core components of ev-
ery robot software. If we abstract the low-level behaviors
of a robot, the functionality of planning the actions of a
robot does not change from one robot to another. When
low-level behaviors are combined in a meaningful way, the
robot completes the required task. The aim in this study is
to provide a tool so that once such low-level behaviors are
developed, meaningful combinations of them can be easily
implemented. The FSC Designer models planning using a
finite state machine (FSM) where one or more actions are
executed at a particular state.

The organization of the rest of the paper is as follows. In
Section 2, related work is presented. Then, the architecture
of visual designer is explained in Section 3. The advantages
of the tool are discussed in Section 4. Finally, in Section 5
conclusions and future work are presented.

2. Related Work

RoboCup (Anon., 2012) is an international robotics com-
petition to promote robotics and Al research. There are
mainly soccer, rescue, @Home, and Junior leagues. The
planning architectures in the RoboCup domain can be cat-
egorized as follows: (1) Behavior-based (Lenser et al.,
2001), (2) FSM-based (Obst, 2002; Loetzsch et al., 2006;
Lausen et al., 2004), and (3) Logic-based (Ferrein & Lake-
meyer, 2008). However, FSM-based architectures can be
viewed as a variation of behavior-based systems since FSM
provides a special arbitration mechanism for the behavior-
based architectures.

The main motivation for using FSM in robot planning is a
need for an easy to design graphical formalism. In (Hugel
et al., 2006; Murray, 2004; Loetzsch et al., 2006), they pro-
pose Hierarchical Finite State Machines to achieve such a
formalism. (Hugel et al., 2006), and (Murray, 2004) pro-
pose a visual tool to simplify the design-test cycle of robot
planning. In (Loetzsch et al., 2006), they propose a more
general robot planning framework in which they use the
XABSL programming language to define agent behaviors.

3. FSC Architecture

The proposed approach is implemented in the Cerberus
RoboCup Standard Platform League team robot soft-
ware (Akin et al., 2011). The FSC architecture has two
components, namely, the FSC Planner Engine, and the Vi-
sual FSC Designer. These are described below.

3.1 FSC Planner Engine

A Finite State Controller (FSC) is a modified version of
the well-known finite state machine. A FSC consists of
states, transitions, and actions. The states and transitions
have the same semantics as the conventional finite state ma-
chines. When the robot runs a FSC planner, all actions of
the active state are run, and all transitions of the active state
are checked. If a transition condition holds, active state
changes to the state pointed by the transition. There is a pri-
ority mechanism where the first transition overwrites other

@ - o) File State Generate Help
R [(0% o

FSC Objects

O

chooseRole IsSupporter

IsChaser

supporter

State

ballknown

searchBall

tumToGoalLookLandmark

ballunknown

timeElapsed

Transition

kickFinished

urntoGoalLookBal

hooseLegToAlig:

¥ &= = = o)) Marloz2:20 {lf

goToBall

activelocalization
fallen

selectRole
closeToBall

gctiveLocalizatio

timeElapsed(1)

GoToObject
TrackObject

ackveLocalizationTopall AvoidObstacle

. readyToKick

alignBall

Remove
KeepDist2Ball

Add

directTransition

Figure 1. A screen shot of the FSC Designer

transitions if it holds any.

Actions are low-level behaviors such as walking with the
given speed vector. The planner engine first runs the ac-
tions of the active state, then checks the transitions and
completes the planner step. There is an implicit subsump-
tion architecture. The action with the highest priority is
executed last since it may overwrite the other actions’ be-
haviors.

3.2 Visual FSC Designer

The Visual FSC Designer is the front-end of the FSC Plan-
ner Engine. It provides an easy-to-use graphical design
tool. It has three functionalities: (1) graphical represen-
tation, and manipulation of finite state controllers, (2)c ode
generation, and (3) deployment to the robot. In Figure 1, a
screen shot of the Visual FSC Designer can be seen. The
designer shows simplified version of Cerberus’s Chaser
behavior. The corresponding XML code generated by the
FSC Designer can be seen in Figure 2. Note that we omit
some states and conditions for the sake of comprehensi-
bility. On the canvas of the FSC Designer, we manipu-
late states and transitions. We add actions to the transitions
from the Actions property of Property Viewer. Actions are
filled from the special directory, but the transitions’ condi-
tion is written in Code Editor Window.

The Visual FSC Designer uses a modified version of State

Chart XML (SCXML) (Barnett et al., 2011). Therefore,
by developing different engines for different robot software
frameworks we can reuse a previously developed plan. The
only requirement is to have the corresponding low-level be-
haviors.

4. Discussion

Many RoboCup teams need such a planning module. This
is due to the importance of low-level behaviors. Teams gen-
erally work hard on low-level behaviors, and there is little
time left to develop complex behaviors. By simplifying the
development of behavior development, teams would have
more opportunity to work on complex behaviors.

Some test scenarios or development activities require com-
plex behaviors. A localization test should not require to
hack some part of the planning module. Any module de-
veloper should be able to implement his test scenario eas-
ily. This is where the FSC Designer becomes handy by en-
abling reuse of previously developed low-level behaviors.

5. Conclusion and Future Work

The proposed system can be used for different robot plat-
forms since the FSC Designer generates platform indepen-
dent XML files. However, it should have its own imple-
mentation of finite state controller.

<?xml version="1.0" encoding="UTF-8"7>
<scxml xmlns="http ://www.w3.0rg/2005/07/
scxml” version="1.0" initial="
searchBall”>
<state id="searchBall” x="976" y="991">
<transition id="ballKnown” event=""
cond="" target="goToBall”/>
<action id="SearchObject”/>
</state >
<state id="kick” x="1756" y="1192">
<transition id="kickFinished” event
=" cond="" target="kickFinished
7[>
<action id="TrackObject”/>
<action id="Kick”/>
<action id="LookKickTarget”/>
</state >
<state id="alignBall” x="1547" y="1286">
<transition id="readyToKick” event=""
cond="" target="kick”/>
<action id="TrackObject”/>
<action id="AlignBall”/>
</state >

<state id="supporter” x="1372" y="770">
<action id="TrackObject”/>
<action id="KeepDist2Ball”/>

</state >

<state id="chooseRole” x="1082" y="772">
<transition id="IsChaser” event=""

cond="" target="notChaser”/>
<transition id="IsSupporter” event=""
cond="" target="supporter”/>
</state >

<state id="goToBall” x="1333" y="946">
<transition id="activeLocalization”
event="" cond="" target="
activeLocalization”/>
<transition id="fallen” event=
=" target="localize”/>
<transition id="selectRole” event=
cond="" target="chooseRole”/>
<transition id="closeToBall” event=
cond="" target="
turnToGoalLookLandmark”/>
<action id="GoToObject”/>
<action id="TrackObject”/>
<action id="AvoidObstacle”/>
</state >
</scxml>

»» cond

9993

3993

Figure 2. Corresponding XML Code

In RoboCup 2011, the Cerberus Team used the FSC De-
signer and ranked in the first 16 teams.

Hierarchical implementation of the finite state controller is
one of the future works since it will enable the develop-
ment of even more complex behaviors on top of the pos-
sible complex behaviors. There is also limited support to
write the transition conditions. As a future work, we aim to
develop a syntax checker and include an auto-completion
feature in the Code Editor Window.

References

Akin, H. L., Gokee, B., Ozkucur, E., Kavaklioglu, C., Se-
vim, M. M., Ayar, T., & Asik, O. (2011). Cerberus’11
team description paper (Technical Report). Bogazici
University.

Anon. (2012).
http://www.robocup.org/.

RoboCup Federation

Barnett, J., Akolkar, R., Auburn, R., Bodell, M., Burnett,
D., Carter, J., McGlashan, S., Lager, T., Helbing, M.,
Hosn, R., et al. (2011). State Chart XML (SCXML):
State Machine Notation for Control Abstraction (Tech-
nical Report). W3C.

Ferrein, A., & Lakemeyer, G. (2008). Logic-based robot
control in highly dynamic domains. Robot. Auton. Syst.,
56, 980-991.

Hugel, V., Amouroux, G., Costis, T., Bonnin, P., & Blaze-
vic, P. (2006). Specifications and design of graphical
interface for hierarchical finite state machines. RoboCup
2005: Robot Soccer World Cup IX (pp. 648-655).
Springer.

Lausen, H., Nielsen, J., Nielsen, M., & Lima, P. (2004).
Model and behavior-based robotic goalkeeper. RoboCup
2003: Robot Soccer World Cup VII (pp. 169-180).
Springer.

Lenser, S., Bruce, J., & Veloso, M. (2001). A modular hi-
erarchical behavior-based architecture. RoboCup-2001:
The Fifth RoboCup Competitions and Conferences (pp.
423-428). Springer Verlag.

Loetzsch, M., Risler, M., & Jungel, M. (2006).
XABSL-A Pragmatic Approach to Behavior Engineer-
ing. 2006 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (pp. 5124-5129).

Murray, J. (2004). Specifying agent behaviors with UML
statecharts and StatEdit. RoboCup 2003: Robot Soccer
World Cup VII (pp. 145-156). Springer.

Obst, O. (2002). Specifying rational agents with statecharts
and utility functions. RoboCup 2001: Robot Soccer
World Cup V (pp. 173-182). Springer.

